





FUTURE

EUAQUA

## **Sustainable breeding of important European aquaculture species**

Binyam Dagnachew (Nofima)

**Final Conference** 

20 April 2023

# **Motivations**

- Climate change is one of the major global concerns with no exception to aquaculture
  - Growth of performance is dependent on water parameters (e.g., temp)
  - Increased risk for more opportunistic disease outbreaks
- Fish farming relying on fish meal and fish oil as feed ingredient is not a sustainable practice
  - Need to use alternative raw materials in fish feed
- How does climate and/or the feed formulation affect economically important traits?

oc. . . .

FUTURF

• E.g., growth, survival, disease resistance

#### **Objectives**

To **assess**, **validate** and **demonstrate** the level of the ability of the current breeding programs, their breeding goals and methodologies in four of the main European aquaculture species to answer the future challenges of:

- 1. Increased need for utilization of alternative feed sources in aquaculture feeds.
- 2. Need for resilience in the face of climate change.
- 3. Maintained and increased animal welfare through robustness and disease resistance.



## **Genotype-by- Environment (GxE)**

- Genetic by environment interaction (GxE)
  - Tells if there is a variation in performance under different environments
  - Discrepancy between expected and realized performance
- Studying of GxE, will provide valuable information on how aquaculture breeding can prepare up front to future challenges.



|                           | 67 Families (BGN)<br>N=~3231                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 888<br>888<br>888<br>888<br>888<br>888<br>888<br>888<br>888<br>88 |
|---------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Genotype<br>by<br>Climate | 88 Families (AVRAMAR)<br>N=~6960                                  | "Volatile" FEU1 "Smooth" FEU2   1740 fish 1740 fish   ^20 fish/family exposed<br>to large temperature<br>fluctuations ~20 fish/family<br>exposed to smooth<br>temperature shifts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |
|                           | 117 Families (AVRAMAR)<br>N=~6829                                 | "Volatile" FEU1<br>1740 fish<br>~20 fish/family exposed<br>to large temperature<br>fluctuations<br>"Smooth" FEU2<br>1740 fish<br>~20 fish/family<br>exposed to smooth<br>temperature shifts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |
|                           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |
|                           | 67 Families (BGN)<br>N=~2935                                      | ROTING TO THE RO | And                           |
| Genotype<br>by<br>Diet    | 67 Families (BGN)<br>N=~2935<br>88 Families (AVRAMAR)<br>N=~10958 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |

## **Genetic parameters for GxE**



| Species  | Heritabilites (EWT) | Genetic correlation |
|----------|---------------------|---------------------|
| SALMON   | 0.46 - 0.58         | $0.93 \pm 0.06$     |
| SEABASS  | 0.21-0.23           | $0.99 \pm 0.04$     |
| SEABREAM | 0.32                | $1.01 \pm 0.03$     |



S

S

ς

| Species |             |                 |
|---------|-------------|-----------------|
| ALMON   | 0.44 – 0-45 | $0.99 \pm 0.01$ |
| EA BASS | 0.30 – 0.35 | 0.92 ± 0.05     |
| EABREAM | 0.14-0.16   | 0.92 ± 0.07     |

FUTURE

EUAQUA

#### Validation of selection methods

• Validate different selection methods for disease resistance and production traits for maintaing and increasing animal welfare

| Traits       | Parents            | Realized response 10% | best families |
|--------------|--------------------|-----------------------|---------------|
|              | Selection criteria | Conventional          | Innovative    |
| Body weight  | BLUP EBV           | +13%                  | +9%           |
|              | GS GEBV            | +18%                  | +15%          |
| Pigmentation | MAS (QQ vs qq)     | Up to 22%             | Up to 16%     |



Salmon



## Validation of selection methods

| Traits      | Parent grouping | Contrast of best vs worst families |            |
|-------------|-----------------|------------------------------------|------------|
|             | (Best vs worst) | Conventional                       | Innovative |
| Body weight | BLUP EBV        | -                                  | -          |
|             | GS GEBV         | 6%                                 | 8%         |







#### Summary

- High genetic correlation between growth traits across environments and diets → no significant GxE
  - Resilience regarding climate change and novel feeds is expected to
    - Help in resource optimization
    - Promote predictable and sustainable aquaculture production
- Validation of selection methods
  - Growth in Atlantic salmon and Gilthead Sea bream
  - VNN disease resistance for European sea bass
- Identification of consistent QTL/SNPs affecting survival against:
  - Viral nervous necrosis (VNN) in European sea bass
  - Infectious pancreatic necrosis (IPN) in rainbow trout





Anne Kettunen (Nofima) Anne.Kettunen@nofima.no

Renchmark Genetics Norway

**Solution** 

Future

EUAQUA



