

Work Package 6

Francesco Capozzi (UNIBO)

Final Conference 20 April 2023

Overview of WP6

WP Leader: UNIBO

Participants: NOFIMA, EMAR, ATEL, APLASMA, TP, HCMR, CS, FEAP, PUAS

Start month: 6 End month: 40

Objectives

The main aim of WP6 is the development of innovative high quality minimally processed fish products and related packaging conditions, in order to valorise aquaculture raw materials. The shelf-life of the most promising packed products will be characterized, in terms of physico-chemical (also through the development of a prototype for the rapid evaluation of fish texture), sensorial and microbiological phenomena, with particular attention to the modification of nutritional and metabolomics aspects.

Task 6.1 (M7-40) Development of new minimally processed fish products: Subtask 6.1.1. Novel non-thermal processes; Subtask 6.1.2. New formulations and valorisation of fish and fish by-products; Subtask 6.1.3. Nutritional Assessment of the new products.

Task 6.2 (M7-40) Product quality and shelf-life: Subtask 6.2.1. Safety and shelf-life modelling; Subtask 6.2.2. Quality evaluation of the raw material and fish products by metabolomics indicators.

Task 6.3 (M7-42) Rapid evaluation of fish texture via system identification and modelling techniques: Subtask 6.3.1. Tests and improvements of prototype; Subtask 6.3.2. Industrial validation of prototype.

Task 6.4 (M7-36) Development of new packaging solutions.

Task 6.1: Development of new minimally processed fish products

						П
Fish specie	Fish provided by	Preparation	Processing optimization	Processing in	TRL	
		(Filletting, skinning,		industrial		
		freezing)		environment		
		O,				+
Sea bream	LEGAL ONLA	Oconomia del mare		O conomia		
	GALAXIDI KEFALONIA	del mare	AlmaPlasma 🏒	Objective	7	
New	Galaxidi Kefalonia	EMAR	Plasma prototype: APLASMA		'	
		LIVIAN	Trasma prototype. Ar EASIMA	EMAR		
						1
European sea bass		Oconomia del mare	AUAUA	Oconomia del mare		
1	AVRAMAR	del I I di e		del mare	8	
	Avramar	EMAR	PEF prototype optimization: ATEL	EMAR		
Adlantia colona			28 NA a di a Air			1
Atlantic salmon	 SALMAR	O conomia	MedicAir			
		del mare	FOOD		8	
	Salmar	EMAR	Cryo-smoking prototype:: CS	TP		
Rainbow trout						1
Kallbow flout		Operation del mare		Oconomia del mare		
	Commercial	del mare		aei mare	8	
		EMAR		EMAR		

Seabream fillets treated with cold gas-plasma, individually packed in MAP

D6.3

Industrial partners

Improvement of shelf life compared to the traditional product

Cold plasma treated compared to untreated → + 40%

Nutrition facts obtained for each innovative products compared to the traditional one

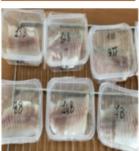
Optimization of the process together with the involved industrial partners for the selected combination species/technology

Cryo-smoking and smoked salmon fillets individually packed under vacuum

Industrial partners

Improvement of shelf life compared to the traditional product

Smoking at 5° C compared to 20° C \rightarrow + 20°



Seabass fillets treated with PEF during brining and after packaging in MAP

Industrial partners

Similar shelf life for PEF treated and control samples

D6.4

Trout fish balls formulated with chitosan and packed in MAP

Mechanical separation

Industrial partners

MANTIS SHRIMP SHELLS

Addition of chitosan extracted by crustaceans by-products → +14 %

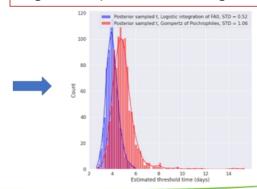
D6.5

RP activities & outcomes

Task 6.2: Product quality and shelf life

- a) seabream fillets subjected to cold plasma treatment
- b) seabass fillets subjected to PEF and brining
- c) cold-smoked salmon fillets
- d) novel formulation of fish balls obtained with rainbow trout flesh

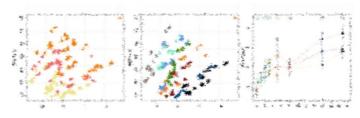
Packed innovative products in operational environment



Analytical determination for shelf life studies

Microbiological	Physical	Chemical
Mesophiles	Colour	Dry matter (%)
Psychrophiles	Texture Analysis	Fat (%)
Enterobacteriaceae		Myofibrillar Proteins mg/ml
Lactic Acid Bacteria		NaCl (%)
Yeasts		NMR
		Peroxides (mEq O2/kg Fat)
		рН
		Phenols (mg/100g Fresh Weight)
		Sarcoplasmic Proteins mg/ml
		TBARS (nmol/mg)
		Water Activity (A _w)
		Water Content (%)

Aim: to define a robust but accessible experimental design, to optimize the costs and analyses needed to characterize the degradation phenomena undergone by a newly developed product.

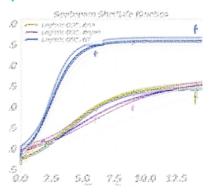


mathematical modelling of the obtained results

Task 6.2.1: Product quality and shelf life

The derived mathematical model, which integrates all analytical measurements performed, can express the overall quality of each seafood product, and extrapolate kinetic parameters that define a more robust indication for shelf-life.

Example: seabream fillets subjected to cold plasma treatment

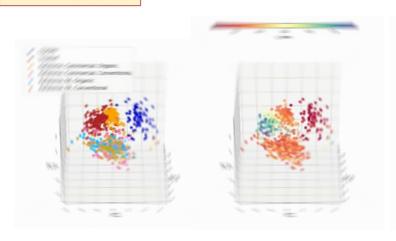


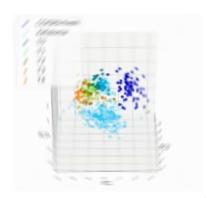
Spearman's correlations matrix resulting from cold gas-plasma seabream fillets. Correlation coefficients between parameters' pairs are represented by the colours shown in the leaend on the right side.

Seabream shelf-life kinetics, from numerical integration of FAO scores variation as a function of time. The two treatments present a very different shelf-life kinetic with respect to the untreated (NT) samples.

D6.7

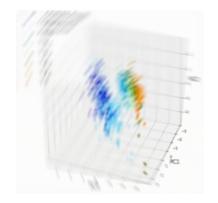
Task 6.2.2: Quality evaluation of the raw material and fish products by metabolomics indicators

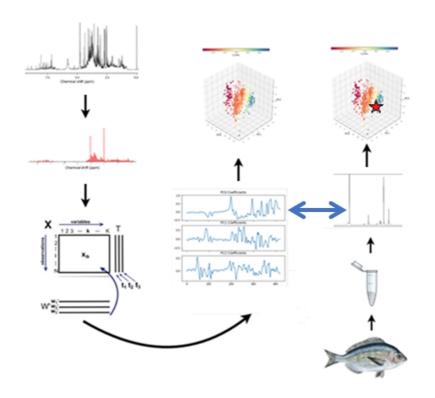

The derived mathematical model, based on the NMR-spectroscopy, defines a metabolomics space that describes 45% of the overall variance found in the molecular quality of a seafood product.



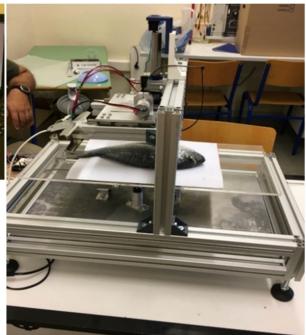
D6.6 (coming very soon)

Case study: seabream fillets subjected to cold plasma treatment





Task 6.2.2: Quality evaluation of the raw material and fish products by metabolomics indicators



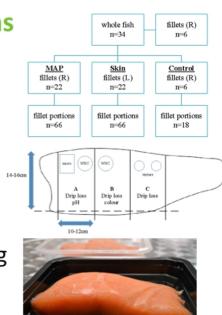
Task 6.3: Rapid evaluation of fish texture via system identification & modelling techniques

 Non-destructive evaluation of fish flesh texture attributes via a custombuilt device and in-house developed operational algorithm: FTET

 Device & algorithm developed and industry-tested with fine tuning

D6.9

Fish Texture Evaluation


Tool

Task 6.4:Development of new packaging solutions

- -Trials show vacuum skin-packaging to be a good alternative to MAP – same shelf-life, less packing material
- -The novel packaging methods also gives better color and firmer fillets
- -Salmon fed FutureEUAqua had the same quality and shelf-life as conventionally fed salmon in both packaging methods

However, FutureEUAqua feed gave a better texture!

Thank you for your attention and contribution!

Francesco Capozzi (UNIBO) francesco.capozzi@unibo.it

